The retreat of winter ice coincides with the migratory return of breeding Common Loons to Michigan’s lakes and reservoirs. It is a journey that many individual loons have undertaken dozens of times, and once paired to old or new partners they are tasked with hatching and fledging one or two offspring over the course of the summer months. The pairs populating the UP and NLP represent the southern breeding periphery of a species whose range stretches across most of boreal Canada to Alaska and northern Europe. Although the loon’s arresting plumage, plangent vocalizations, and august demeanor inspire admiration among naturalists and artists alike, within Michigan a degree of incongruity exists between its prominent role as an icon of wilderness and its actual status as a relatively uncommon inhabitant of the state’s abundant inland water bodies.

Breeding Biology
Common Loon pairs establish rigorously defended territories on a wide variety of lakes and reservoirs at least four ha in size (McIntyre 1994). Obligate piscivores, loons often expand their foraging to nearby water bodies if fish abundance on a breeding territory proves insufficient. Nests are constructed on islands, hummocks, or bog shoreline to minimize risk from mainland predators. Incubation lasts nearly one month and is undertaken by both male and female; pairs will often renest if a first attempt ends in failure (Evers 1994). Hatched downy chicks are semi-precocial and develop rapidly over the ensuing nine weeks. Fully-feathered juveniles resemble adults in drab breeding Common Loons in the SLP (Robinson et al. 1988, Robinson 1991). Today, the species remains distributed across the northern two-thirds of Michigan, with comparatively dense concentrations on Isle Royale National Park and in the western and eastern-central portions of the UP. While a small disjunct SLP population in Barry Co. and Allegan Co. has contracted in size since MBBA I, survey data suggest that nesting occupancy along the contiguous southern periphery of NLP counties has slightly increased over the past two decades.

Distribution
Although early naturalists such as Cook (1893) and Hubel (1903) documented the ubiquity of the loon in Michigan, by 1912 Barrows noted that “of late years it is much less common in summer in the more thickly settled parts of the state.” Sporadic anecdotal accounts of this nature continued until the 1980s, when formal surveying catalogued the near absence of
Common Loon (*Gavia immer*)

Status: State Threatened

Winter plumage and generally fledge from their natal lake after the migratory departure of both parents. These immature birds will spend at least two years on oceanic waters off the southern United States before returning north as potential breeders (McIntyre and Barr 1997).

Although loons are serially monogamous, recurrent challenges from intruders can dissolve partnerships; yearly turnover is roughly 10% and is often precipitated by young adults in search of their first territory and mate (Piper et al. 1997, Evers et al. 2000, Common Coast Research & Conservation unpublished data). Because estimated annual survivorship of color-marked adults in Michigan is over 95%, projections concerning Common Loon longevity currently exceed 35 years (Vucetich et al. 2004).

Abundance and Population Trends

Surveys in the early 1980s that first estimated the Michigan breeding loon population at less than 220 pairs resulted in the formal designation of the species as Threatened within the state. Subsequent surveying in the latter part of the decade moderately elevated this figure to 300 pairs (Michigan Loon Recovery Committee 1992). More recently, an atlas project on Isle Royale increased the number of documented territorial pairs on the island from 40 to over 100. However, the authors concluded that this rise was largely reflective of improved survey techniques rather than an actual upsurge in occupancy (Gostomski 1997, Kaplan et al. 2002). Similarly, a note of caution should attend direct comparisons between MBBA I and MBBA II data: by one metric of likely nesting, confirmed and probable blocks, pair occupancy rose by 18% since MBBA I; 86% of this increase, however, occurred in the UP, where atlasing efforts comparable to Isle Royale’s have been undertaken across large stretches of the peninsula over the past decade. While a contemporary estimate of Michigan’s breeding population (500-775 pairs) boosts the loon’s abundance relative to prior assessments, the present numbers should be weighed in the context of Michigan’s bounty of fresh water: there are many thousands of suitable inland lakes across the state that remain uninhabited by breeding loons (Evers 2004, Common Coast Research & Conservation unpublished data).

Conservation Needs

The loss of nesting habitat through shoreline development and modification was undoubtedly the primary cause of the Common Loon’s functional extirpation from the SLP. On lakes where suitable nesting sites no longer exist, an artificial nesting platform can function as a viable, if imperfect, surrogate (Piper et al. 2002, Mager et al. 2008); on lakes with extant habitat held in private ownership, conservation easements can serve to safeguard vulnerable shoreline areas in perpetuity. Because loons are skittish during incubation, preservation of the habitat must function in concert with the absence of human disturbance in its vicinity. It is no coincidence that the state’s highest long-term productivity occurs at Seney National Wildlife Refuge where water recreation by visitors is prohibited (Titus and VanDruff 1981, Kaplan 2003). On lakes where loons and people must coexist more closely, lake associations and public agencies can post educational materials at access sites and deploy warning buoys around nesting areas.

Common Loons face a host of potential complications related to their fish-based diet. The accumulation of highly toxic mercury can create physiologic impairments that impede successful reproduction; elevated mercury in fish is closely associated with acidic, low-pH water bodies, which occur throughout much of the UP (Linthurst et al. 1986, McCormick et al. 2006, Burgess and Meyer 2008). The ingestion of lead jigs and sinkers poses a more directly lethal problem, although one that can be remedied through the use of non-toxic alternatives (Franson et al. 2003). On the Great Lakes, the reemergence of type E Botulism
Common Loon (*Gavia immer*)

Status: State Threatened

Outbreaks presents a peril of potentially devastating scope. Thousands of adult loons have perished on all of the Great Lakes except Superior since 1999; ongoing research is attempting to determine what percentage of these mortalities is Michigan breeding birds (Yule et al. 2006, NYSDEC 2007). Finally, anecdotal accounts suggest that loons drowning within commercial fishing nets on the Great Lakes continue to represent an underreported and understudied threat.

Literature Cited

© 2011 Kalamazoo Nature Center
Common Loon (*Gavia immer*)

Status: State Threatened

Suggested Citation

© 2011 Kalamazoo Nature Center